POSSIBLE INFLUENCE OF THE SELF DIFFUSION OF
THE ATOMS ON MASS DISPLACEMENT IN A SOLID
UNDERGOING A SURFACE REACTION
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The possible influence of a diffusive flow of atoms (vacancies) on mass displacement in a
solid undergoing a surface reaction is examined analytically.

In two earlier papers [1, 2] devoted to experimental investigations into the high-temperature reactions
of carbon, changes observed in the densities of the samples were attributed to the occurrence of a substan-
tial solid-phase diffusion of atoms from the interior of the solid to its surface. The atoms in the solid
tended to occupy lattice vacancies at the surface formed as a result of the reaction, while the vacancies
themselves diffused into the interior.

In this paper we shall use a mathematical model in order to elucidate the conditions under which the
diffusive flow of atoms or vacancies may make a substantial contribution to the loosening of a solid in the
presence of a surface reaction. :

It is well known [3] that in real crystals at high temperatures the ideal crystal structure is inevitably
distorted by defects such as vacancies or interstitial atoms (the probability that the latter will occur in
close-packed structures formed by atoms of a single type is practically zero). Sources (or sinks) of
vacancies may be provided either by the external surfaces of the sample or by defects of various kinds in
the interior (dislocations, pores, etc.). The equilibrium vacancy concentration ¢, is given by the equation

€y = €Xp {—— -E[;‘_} . )

In the absence of equilibrium, the changes taking place in the vacancy concentration with time are due
to diffusion, together with vacancy sources and sinks. Subsequently we shall consider the diffusion equation
in the quasi-steady-state approximation * (9c/af ~ 0), assuming that the characteristic time of the process,
i.e., the time required for an appreciable loosening of the material, is considerably greater than 7 (the
x axis is directed toward the interior of the solid):
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where DV is the self-diffusion coefficient of the vacancies

1 & 1 8 [ AU:
D —— = = = exp !— ,
pl i 3)

while the relaxation time 7g may vary over a wide range according to the degree of defectiveness of the
crystal, Thus if the vacancy sinks are pores of radius r uniformly distributed throughout the volume and
lying an average distance ] apart, we have [4]

. *If we put t; ~1/mv, and Dym >w,, in accordance with (29) and (18) respectively, by using (9) and (19) we
obtain Tg/t; < vo/wy << 1.
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The boundary condition on the surface x = 0 may be obtained in the form
» de

dx

Wy (¢ —¢p) — vy =D, -
by generalizing the corresponding condition in [3] if we put
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As indicated by Ya. I. Frenkel' [3], in addition to ordinary evaporation, which corresponds to the complete
removal of a surface atom from the crystal, we also have to consider processes of incomplete evaporation.
One of these processes lies in the transition of surface atoms from the regularly-constructed surface layer
to the top of that layer; this corresponds to the formation of a new outer layer and the development of
vacancies, with the subsequent diffusion of these into the interior. Condition (5) describes the balance of
vacancies at the crystal boundary in the absence of equilibrium; here v, is the rate of vacancy formation

by the surface reaction.

As we shall later be using the resultant equations for approximate caleulations, let us write down
an approximate solution to Eq. (2) with the boundary conditionl (5), subject to the condition at infinity
¢ = ¢, = const (regarding the diffusion coefficient as constant):

¢y — Aexp | — mux}, (7)
where
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Before studying the resultant solution we make the following comments.

For ideal crystals the ratio w,/Dy, is quite large (order of 1/ ~ 10 cm™!). We may therefore con-
sider wy/D; >>m. However, in solids with macroscopic crystal lattice defects the experimentally -measured
values of the diffusion coefficient are much greater than the values of the diffusion coefficient corresponding
to single crystals. This is due to the existence of easy diffusion paths in real crystals (paths associated
with the development of a network of boundaries between structural elements, microcracks, and pores,
possibly connected to the outer surface by microcapillaries [2, 41). The coefficients of surface and bound-
ary diffusion at a temperature close to the melting point exceed the coefficient of three-dimensional- dif-
fusion in a single crystal by four or five orders of magnitude.

For example, let us suppose that microcapillaries of radius r; pass out to the outer surface. Let us
calculate the flow of adsorbed atoms through unit length of such a capillary. The adsorbed atoms diffusing
along the surface will be absorbed by vacancies emerging at the surface of the capillary. The flow of
these vacancies through unit surface area equals woc. We shall now consider that, as for an infinite cylin-
der, the number of adsorbed atoms absorbed by the solid is in local equilibrium with the flow of vacancies
from the solid. This means that the whole of the diffusion flow of adsorbed atoms through unit length may
be expressed in terms of the concentration gradient of the vacancies in the interior of the solid:

=Dy —;; (@,cty) = Dywyt, %Cc- , _ (10)
where 7y is the lifetime of an adsorbed atom, Dy is the coefficient of surface diffusion. The total surface
flow of adsorbed atomsthroughunit surface area of the solid at x = 0 (e is the surface porosity) equals
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Then the effective diffusion coefficient which is to be used in the expressions just given takes the form

. D -
Dy oi= Dy (1 —e) + D |

. (12)
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As already noted, Dy >> D,,. Hence the ratio wy/Dy.eff may be several orders of magnitude smaller than
the corresponding value for the single crystal. In this case we may have the inequality wy/Dy opp < M.

However, if we take account of the finite length of the microcapillarities emerging on the surface of
the solid, the foregoing local equilibrium between the diffusing adsorbed atoms and vacancies in the interior
of the solid will not take place. In this case, strictly speaking, we should carry out a simultaneous solution
of the equation for surface diffusion, with the corresponding boundary condition at x = 0 [5], and the equa-
tion for the three-dimensional diffusion of the vacancies. Then in addition to the effective diffusive flow
.of atoms through each unit of surface area some of the adsorbed atoms will pass directly from the surface
of the capillary to the surface of the solid and there enter into the reaction. This surface flow of adsorbed
atoms is not associated with the vacancy mechanism of diffusion, and it is difficult to incorporate it into
the boundary condition (5) and correspondingly into Eq. (8). We can only note that the surface flow in
question will also reduce the rate of forward motion-of the reaction front, at the same time tending to
loosen the material internally,

Let us now turn to the foregoing solution (7)-(9). Let us consider two limiting cases (subsequently
we shall understand D, to mean the effective diffusion coefficient:

I. wy/Dy>> m.

Then the relative supersaturation of the vacancies for x = 0 is
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As already indicated, the atoms diffusing from the inside of the solid replace the vacancies formed at the
boundary x = 0. In this way the forward velocity of the reaction front v is reduced, i.e.,

v—0U,=Av =D, de =D, dc,
dx x=0 dx x=0
mDV dc.
— v, + D, 0
’ wf) ( o v dx .x=0> . (14)

If in addition to this vy > Dy, dey/dx (we shall consider in future for simplicity that the temperature gradients
in the solid are small), we have
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We see from Eq. (16) that in the case w;/Dy >> m the relative change in velocity Av/v, tends to zero and
loss of material takes place from the surface.

II. wy/Dy << m,
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It follows from (18) that in the case wy/Dy<<m the rate of progress of the reaction front v will tend to zero
and the loss of mass will take place from the interior by virtue of the diffusion of the atoms composing the

solid to the surface.

Let us now consider the problem of the loosening of the material, i.e., the change taking place in
its density with time. We know [3] that the mobility and diffusion coefficient of the atoms respectively
equal:

w, =wg, D,=Dy. (19)

Hence the expression for the density of the diffusive flow of atoms may be written in the form [6]
G =@+ 8~ Hu, () =—D, L+ aDy 2 20)
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Substituting (20) into the equation
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Using (7) we have (for case Il in which v —0)
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For the boundary condition x = 0 we have
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For large m the source in Eq. (23) may be replaced by an equivalent surface source, by incorporating
this into the boundary condition. Then (23) and (24) take the form
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The solution fto the problem (25)-(26) @ | =0 = ng) is quite well known [7]. In particular the value of n at
the surface x = 0 equals

55— = exp {ng« l} @*(vo l//—ftD——) . 27)

0
For short times (¢ << D, /v20)
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At the same time it follows [7} from the solution to the problem (23)-(24) for short times t << 1/mv; (for
which we may consider n(x, t) =n, on the right-hand side of (23))that
n“}

— =1 — mogt.

1, 29)

Comparison of (28) and (29) shows that for £ << 1/mv, the state of distribution of the source in (23) is very
important.

The equation of energy for the solid may be written [81:
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In case O by using (7) and (27) we obtain
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The plus sign of the right-hand side of (32) is due to the recombination of the excess vacancies inside the
solid, as a result of Which energy is evolved.

The boundary condition for Eq. (32) when x = 0 takes the form
de - =
gir— — ~,—pDvE(L—U)=pvo(L—U)-, (33)

As in (23) the source on the right-hand side of (32) may be replaced (for large m) by an equivalent surface
source by incorporating it into the boundary condition. Then Eq. (33) takes the form

aT
For t = 150 sec and a 15% mass loss the value of ng/ny ~ 0.5, was obtained experimentally [1]; this

was maintained for a fairly long reaction period. The problem of the loosening of carbon was therefore
formulated in the following way in [1]:

g=—>x

+ pu,L. (34)

o0 oY,
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n=0 for x<<0, =0,
n=u, foor x>0, {=0.

If we calculate ng/ny from Eq. (27) using the following values of the original data t =150 sec, vy =

=0.24 . 1073 cm/sec (whxch corresponds to a mass loss of 159, Dy~ 1.4-107° cm ?/sec [1], we also obtain

ng/n, ~0.5. Owing to the slow fall in the function (27), the change in ng/n, is only very slight as the argu-
ment increases further (for £ = 300 sec, ng/n;~ 0.43). We thus obtain qualitative agreement between the
calculated data for ng/n, and existing experimental results [1]. In addition to this, a consideration of the
kinetic characteristics of the vacancies within the framework of the model here proposed enables us to for-
mulate the boundary problem correctly both for the diffusion equation and for the energy equation in the
solid in the presence of a surface reaction,

NOTATION

is the vacancy concentration;

is-the energy of vacancy formation;

is the energy required for the notion of the vacancies;
is the number of particles in unit volume of the solid;
is the Boltzmann's constant;

is the absolute temperature;

is the interatomic distance;

is the period of the vibrations of the atoms around the equilibrium position ;
is the sessile lifefime of a vacancy;

is the velocity of sound;

is the vacancy diffusion coefficient;

is the atomic diffusion coefficient;

is the velocity of the reaction front;

is the density of the solid;

is the specific heat of the solid;

is the enthalpy of the solid;

is the heat of the reaction;

is the density of the external thermal flux;
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